\qquad
Introduction to Scientific Notation
Objective: I can use scientific notation to express very large or very small quantities.
Guided Practice:
Scientific Notation- when you are dealing with very large or very small numbers, it is helpful to be able to write them in a shorter form.

$$
\frac{\text { Scientific Notation }}{2.59 \times 10^{11}}=\quad \text { Standard Form }
$$

Rule: A number is in Scientific Notation if:

1) The first factor is a single digit followed by a decimal point
2) Multiplied by the second factor which is a power of 10 .

Exercise 1-Determine if the following numbers are written in scientific notation:
(1) 3.2×10^{4}
(2) 78.96×10^{4}
(3) 456.1×10^{-8}
(4) $9 . \times 10^{-5}$

$$
\begin{aligned}
& \text { Nes. No, } \\
& \text { two digits }
\end{aligned}
$$

Scientific Notation: When to use Positive Exponents and Negative Exponents
A number in scientific notation with \square positive exponents represents a number greater than one (undele number. * Large
A number in scientific notation with Na, exponents represents a number between o and 1 (decimal). HSNAT

Remember:
Positive Exponent \longrightarrow
Negative Exponent \longrightarrow

Exercise 2- Determine if the following numbers below will be whole numbers or decimals.
(1) 1.2×10^{5}
(2) $5.8 \times 10-5$
(3) 6.8×10^{-9}
(4) 3×109
whole \#

