Comparing Numbers in Scientific Notation

Objective: I can compare numbers written in scientific notation.

Warm Up: Are the following numbers written in scientific notation? If not, state the reason.

(a) $4.0701 + 10^7$

No! Scientific Notation uses multiplication! (b) 0.325×10^{-2}

No! The first factor must be a single Non-Zero digit!

Investigation 1: Express each scientific notation in standard form-

(a) 4.3×10^2

430=430

(b) 2.5×10^3

25,00=2,500

Which number is smaller?

Which number is larger?

 2.5×10^{3}

The largest exponent is the greatest value.

Investigation 2: Express each scientific notation in standard form-

(a) 2.1×10^4

21000=21,000

(b) 1.5×10^4

15000=15,00

Which number is smaller?

Which number is larger?

Is there a relationship between the value of the coefficient and which number is larger or smaller?

when the exponents are the same, the

larger coefficient has the greatest value.

Guided Practice: Steps for Comparing Numbers in Scientific Notation Form

1. To compare two numbers given in scientific notation, first compare the **exponent**.

The one with the greater exponent will be Larger

2. If the exponents are We same the decimals.

Compare the	quantities in	the	following	exercises	using	<,	>,	or	=
-------------	---------------	-----	-----------	-----------	-------	----	----	----	---

 1.06×10^{16} $> 2.4 \times 10^{15}$ Exercise 2: 2.78×10^{10} $= 278 \times 10^{10}$ Exercise 1:

Exercise 3- Order the countries shown in the accompanying table according to the amount of money

their visitors spent in the United States from least to greatest.

Least > 0	India
-----------	-------

2 Mexico

3) Canada

Greatest > 4 united Kingdom

Dollars Spent b Visitors in					
Country	Dollars Spent				
Canada	1.03 × 10 ⁷				
india	1.83 × 106				
Mexico	7.15 × 166				
United Kingdom	1.06 × 10 ⁷				

Problem Set: For the following problems, use >, <, or = to make the statement true.

(1)
$$9.74 \times 10^{21}$$
 2.1×10^{22}

(2)
$$5.28 \times 10^{12}$$
 95.4×10^{12} 9.54×10^{13}

(3)
$$2.33 \times 10^{10}$$
 7.6×10^{10}

$$(4) 4.4 \times 10^7 = 44,000,000 - 4.4 \times 10^7$$

(6)
$$1.2 \times 10^{-3}$$
 4.7 $\times 10^{-3}$

(7)
$$6.23 \times 10^{14}$$
 \ge 8.912×10^{12}

(8)
$$5.15 \times 10^{-4} > 6.35 \times 10^{-5}$$

(9)
$$3.28 \times 10^{17}$$
 4.25×10^{17}

$$(10) -1.2 \times 10^{5}$$
 $> -1.7 \times 10^{5}$
-1.2 > -1.7 because its closer to 0.

(11) Compare the following problem. Be sure to explain your reasoning.

 12.8×10^3 \geq 1.4 × 10³ When in Scientific notation, exponents 4>3 notation!