(a)

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{2 x}-\mathbf{1}$	$\boldsymbol{y}=\boldsymbol{x}+\mathbf{2}$
-5	-11	-3
-3	-7	-1
0	-1	2
3	5	5
5	9	7
7	13	9

Solution: \qquad
(b)

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{5} \boldsymbol{x}-\mathbf{1}$	$\boldsymbol{y}=\mathbf{5} \boldsymbol{x}+\mathbf{2}$
-3	-16	-13
-2	-11	-8
-1	-6	-3
0	-1	2
1	4	7
2	9	12

Solution: \qquad No solution

Solving a System of Equations by Elimination

1. Line up like terms for all equations
2. Look for opposite \qquad coefficients (like $3 x$ and $-3 x$) that will eliminate a variable. If you can't find one, you can make one by multiplying \qquad an equation by a number.
3. $A D D$ each set of line terms to eliminate a variable, solve the remaining equation for the other variable.
4. Use your new found value to $\$ 4 b s t i t u t e$ and solve for the other missing variable.
5. Write the solution as an ordered pair (x, y)

Coordinate.

Exercise 1 - Solve the following system:

Exercise 2- Solve the following system of equations: $\left\{\begin{array}{l}3 y+x=4 \\ y-2 x=6\end{array}\right.$

