## 7-4 Rotations

Learning Target: I can rotate figures to create congruent images.

Warm Up: Define the following-

- > Counter-clockwise Turns to the Left
- > Clock-wise Turns to the right



Discovery: "The Rules of Rotations"

## **Conclusions- Rules for Rotation**

Roo, origin (x, y) Counter-clockwise

Move

1 Quadrant

Roo, origin (x, y) Counter-Clockwise

Moves

2 Quadrants

Rootes

Rootes

3 Quadrants

Rootes

Rootes

( \( \), -\( \))

Rootes

Rootes

( \), -\( \), -\( \)

Rootes

Rootes

( \), -\( \), -\( \)

## Go the Discovery Problem below:

(a) We are going to turn our paper to the **left** (counter-clockwise) to discover the rules of rotation.

90 degrees = 1 time

180 degrees = 2 times

270 degrees = 3 times

360 degrees = 4 times

- (b) Read the coordinates as if the axes changed and write them on the line provided.
- (c) Try to fill in the rules, but we will review them together!

**Discovery** Take the point A(4, 2) and rotate it as stated. Plot A' and state its coordinates.

(Remember positive numbers, you move in the counter-clockwise (CCW) direction.





move 3 Quads

\* Stays Same!





A': (2, -4)

Rotation of 360°



A': (4,2)

## Guided Practice: Rotations on the Coordinate Plane:



A **rotation** is a rigid motion that turns a figure about a fixed point called the **center of rotation**.

The **angle of rotation** is the number of degrees the figure rotates.

A rotated figure is the image of the original figure (pre-image). The side lengths and angle measures of the rotated figure do not change. As with translations and reflections, each side and angle of a rotated figure corresponds to the same side and angle of its original figure.



\*\* Positive angles = counter - clockwise\*\* \*\*\* Always counter-clockwise unless stated, otherwise\*\*\*