7-4 Rotations

Learning Target: I can rotate figures to create congruent images.

Warm Up: Define the following-

- > Counter-clockwise Turns to the Left
- > Clock-wise Turns to the right

Discovery: "The Rules of Rotations"

Conclusions- Rules for Rotation

Roo, origin (x, y) Counter-clockwise

Move

1 Quadrant

Roo, origin (x, y) Counter-Clockwise

Moves

2 Quadrants

Rootes

Rootes

3 Quadrants

Rootes

Rootes

(\(\), -\(\))

Rootes

Rootes

(\), -\(\), -\(\)

Rootes

Rootes

(\), -\(\), -\(\)

Go the Discovery Problem below:

(a) We are going to turn our paper to the **left** (counter-clockwise) to discover the rules of rotation.

90 degrees = 1 time

180 degrees = 2 times

270 degrees = 3 times

360 degrees = 4 times

- (b) Read the coordinates as if the axes changed and write them on the line provided.
- (c) Try to fill in the rules, but we will review them together!

Discovery Take the point A(4, 2) and rotate it as stated. Plot A' and state its coordinates.

(Remember positive numbers, you move in the counter-clockwise (CCW) direction.

move 3 Quads

* Stays Same!

A': (2, -4)

Rotation of 360°

A': (4,2)

Guided Practice: Rotations on the Coordinate Plane:

A **rotation** is a rigid motion that turns a figure about a fixed point called the **center of rotation**.

The **angle of rotation** is the number of degrees the figure rotates.

A rotated figure is the image of the original figure (pre-image). The side lengths and angle measures of the rotated figure do not change. As with translations and reflections, each side and angle of a rotated figure corresponds to the same side and angle of its original figure.

** Positive angles = counter - clockwise** *** Always counter-clockwise unless stated, otherwise***

Exercise 1- Determine the image of A after each reflection stated:

A(4,5) and rotate 270° counter-A(4,5) and rotate 90° counter-A(4,5) and rotate 180° counterclockwise clockwise clockwise A'(-4,-5)A'(-5, 4)A'(5,-4)A(4,5) and rotate 90° clockwise A(4,5) and rotate 270° clockwise A(4,5) and rotate 180° clockwise A' (5 A' (-5, 4 A'(-4.-5)

Look at the exercise 1 above, do you notice anything about certain rotations?

90°CCW = 270°CW 180°CCW = 180°CEW 270°CCW = 90°CW Exercise 2- Sarah drew a rectangle on the grid to the right. On the same grid rotate the original rectangle about

the origin:

a) 90 degrees clockwise and label the new points A'B'C'D'

c) Are all the triangles congruent? Explain

Yes, rotation is a rigid motion. It preserves

shape + size, so they are all congruent.

Exercise 3- The use of the coordinate plane below is optional:

1. What is the image of Point A(5,8) when rotated 270° about the origin?

pule x) A'(8, -5)

2. What is the image of Point A(-2,3) when rotated about the origin?

$$A'(2,-3)$$

RULL 3. What is the image of Point A(1,-3) when rotated

4. What is the image of Point A(-2,-4) when rotated

Let use origin?

A (2, 4)

What is the image of Point A(3,-5) when rotated 270° about the origin?

Rule \rightarrow $(x,y) \rightarrow (y,-x)$ $(3,-5) \rightarrow (-5,-3)$