\qquad Date \qquad
Unit 8: Angle \& Triangle Relationships
8-1 Triangles: Angles and Sides!
Learning Target: I can identify possible side combinations and angle measurements of triangles.
There are many different types of triangles that you may have already learned about.

Warm Up:	Types of Triangles			
Name of Triangle	Definition			
Equilateral Triangle				
all 3 equal sides,				
Isosceles Triangle angles.				two equal sides,
:---				
two equal angles	,	No equal sides,		
:---				
Scalene Triangle				
No equal angles				

Guided Practice: Triangle Inequality Theorem

The \qquad sum of the two smaller sides of the triangle must be \qquad greater than the largest third side!

Exercise 1-Given the diagrams below; determine whether a triangle can be created. Show your work to justify your answer.
(a)

(b)

Exercise 2- Which of the following numbers could represent the side lengths of a triangle?

* $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3.5 \mathrm{~cm}$	$\begin{gathered} 14 \\ 6 \mathrm{~cm}, 8 \mathrm{~cm}, 15 \mathrm{~cm} \end{gathered}$
W $5 \mathrm{~cm}, \frac{8 \mathrm{~cm}, 15 \mathrm{~cm}}{13}$	D) $5 \mathrm{~cm}, \underset{12}{7 \mathrm{~cm}}, \underbrace{9 \mathrm{~cm}}$

Discovery: Triangle Angle Sum Activity on the Smart Board

Angles in a Triangle

Guided Practice: Triangle Interior Angle Sum Theorems
Exercise 1-Show all your work, for the following problems.
(a) Given the measure of $m<E \underline{B} G=25$,
determine the $m<\underline{B} E G$..

(b) What is the $m<L M K$?

Exercise 3- Find the value of x in the triangle below. Then find the measure of angle R

Exercise 4- Find the measure of each angle in triangle ABC . Show all work.

Exercise 5- The measures, in degrees, of the three angles of a triangle are $\mathrm{x}, \mathrm{x}+10$, and $2 \mathrm{x}-6$. Find the measure of each angle.

Problem Set:

1. Find the measure of $<H I G$

2. What is the measure of $\angle A B C$?

3. Given $\triangle T S R$ is a right triangle, with $\angle T=3 x-2, \angle R=x+20$. Determine the $m \angle R$ and $m \angle T$.

4. Which set of side lengths can form a triangle? Show work to support answer.
(a) $2 \mathrm{~cm}, 5 \mathrm{~cm}, 9 \mathrm{~cm}$
(b) $5 \mathrm{~cm}, 12 \mathrm{~cm}, 20 \mathrm{~cm}$
(c) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 10 \mathrm{~cm}$
(d) $5 \mathrm{~cm}, 12 \mathrm{~cm}, 17 \mathrm{~cm}$
5. Using the diagram below, find the measure of angle A.

Triangle Basics - Lesson Summary:

1. What is the sum of all the interior angles of a triangle?

2. What is the formula we developed for the sum of interior angles of a triangle?

$$
\text { add up to } 180
$$

3. Is there a rule for the side lengths of a triangle?

$$
\begin{aligned}
& \text { sum of smaller } 2 \text { must be } \\
& \text { greater than the largest. }
\end{aligned}
$$

8-2 Interior Angle Sum Theorem
DO NOW: Classify each triangle below using the vocabulary from page 1 of this packet.

Let's Practice:
(1) The measures of the angles in triangle UVW are shown in the diagram below.
a) What is the value of $x ? X=45$
b) Fine $\frac{126^{\circ}}{3 \times-9}$
(2) Solve for all missing angles in the diagram below.

$$
x=45
$$

(3) Solve for all missing angles in the diagram below.

$$
\begin{array}{r}
133 \\
+\quad 33 \\
\hline 166 \\
\hline 166 \\
\hline 14
\end{array}
$$

(4) Find all missing angles in the diagram below.

(5) In $\triangle B E D$, the measure of $<E$ is $21 /$ less than four times the $m<\boldsymbol{B}$, and the measure of $<D$ is 1 more than five times the measure of $<\boldsymbol{B}$. Find the measure, in degrees, of each angle of $\triangle B E D$.
[Draw a diagram and label all parts!] $x+4 x-21+5 x+1=180$

$$
\angle B=x=20^{\circ}
$$

$$
<E=4 x-21=4(20)-21=59^{\circ}
$$

$$
\angle D=5 x+1=5(20)+1=101^{\circ}
$$

