\qquad
Unit 8: Angle Relationships
Math 8R

8-6 Parallel Lines Cut by a Transversal - Day 2

"I can use angle relationships to find the measure of missing angles."
Warm Up: Given the diagram below, find each angle as stated...

$$
\text { If } m \angle 7=100^{\circ} \text {, then } m \angle 3=100
$$

If $m \angle 3=140^{\circ}$, then $m \angle 8=$ \qquad If $m \angle 7=175^{\circ}$, then $m \angle 6=\underline{5}$ If $m \angle 4=30^{\circ}$, then $m \angle 1=150^{\circ}$ If $m \angle 7=120^{\circ}$, then $m \angle 5=\underline{120}$ If $m \angle 4=40^{\circ}$, then $m \angle 2=40^{\circ}$ If $m \angle 4=20^{\circ}$, then $m \angle 7=\underline{160}$ If $m \angle 7=125^{\circ}$, then $m \angle 4=$

When looking for the value of x or an angle measurement that consists of algebraic expressions in a diagram such as the ones you see on this page, you must set up an equation to answer the problem. To do this, you must know the angle relationship between the angles that you are working with.

- Are they Supplementary (sum to 180°) OR complementary sum to 90°)? - Are they Congruent to each other? vertical, alternate interior, alternate exterior, corresponding? If you know the relationship, then you can set up an equation to find the value of x.

Exercise 1- Based off the diagram below, answer the following questions:

a) What is the angle relationship between <4 and <5 ?
Alt. Interior * Congruent
b) The $\mathrm{m}<4=5 x-10$ and the $\mathrm{m}<5=3 x+40$. Find the $m<5$.

Exercise 2- In the figure below, $\overleftrightarrow{\boldsymbol{E F}}$ intersects parallel lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ at G and H.
a) What is the name of the relationship of $\angle A G H$ and $\angle C H F$?

Cor responding (congruent)
what she value of

Problem Set:

1. Given the problems below, solve for x :

(b)

2. In the accompanying diagram, parallel lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are intersected $\overparen{E F}$ by at G and H . respectively. $m<C H G=x+20$ and $m<D H G=3 x$.
a) $m<C H G=$

b) $m<D H G=$

c) $m<A G H=$ \qquad
d) $m<F H D=$

3. In the accompanying diagram, parallel lines $\overline{A B}$ and $\overline{C D}$ are intersected by transversal $\overline{E F}$ at G and H, respectively. If $m<A G H=4 \mathrm{x}+30$ and $m<G H D=7 \mathrm{x}-9$, what is the value of x ?

[^0]
[^0]: *Not Drawn to Scale*

