Name: Sequences: Lesson 3 – Practice with Arithmetic and ("I can differentiate between arithmetic and geometry	Date: Geometric Sequences Algebra 1 CC ic sequences to write equations and find missing terms."			
Warm Up: fill in the blanks- When given a sequence, if we add/subtract to get to the next term, called the common <u>difference</u> it's referred to as an <u>arithmetic</u> sequence. The graph is <u>linear</u> . The explicit formula used is <u>$a_n = a_1 + d(ni)$</u>				
When given a sequence, if we multiply by a whole r Git's referred to as a <u><i>geometric</i></u> sequence The explicit formula used is				
Guided Practice: Arithmetic Sequence $a_n = a_1 + (n-1)d \leftarrow$	You are given the two equations to the left on your REFERENCE SHEET.			

Arithmetic: Linear - common difference Geometric: Exponential - common ratio

Exercise 1 - Determine whether each sequence is arithmetic or geometric. State the common difference or common ratio. State if the graph would be linear or exponential.

Sequence	Arithmetic or Geometric	Common difference or Common ratio	Linear or Exponential
a) 15, 13, 11, 9,	Arithmetic	d=-2	Linear
b) 1, 4, 16, 64,			
c) 2, -4, 8, -16,	Geometric	r= -2	Exponential

Exercise 2- Determine if the following sequence is arithmetic or geometric: 50, 10, 2, ... a) Write an *explicit* formula. $Q_n = 50(\frac{1}{2})^{-1}$ Qn=50(3)

- b) Find the 5th term

Geometric

Sequence

 $a_n = a_1 (r)^n - 1$

Exercise 3- Determine if the following sequence is arithmetic or geometric: 35, 32, 29, 26, ...

- a) Write an *explicit* formula.
- b) Find the 25th term

<u>Regents Questions:</u> Show all work leading to your answer.

- 1. The third term in an arithmetic sequence is 10 and the fifth term is 26. If the first term is a_1 , which is an equation for the *n*th term of this sequence?
 - (1) $a_n = 8n + 10$ (3) $a_n = 16n + 10$ (2) $a_n = 8n - 14$ (4) $a_n = 16n - 38$
- 2. Which formula can be used to find the *n*th term in the geometric sequence 96, 72, 54, ...?

$$\sqrt{(1)} a_n = 4n + 12$$

$$\sqrt{(2)} a_n = 4n + 8$$

$$(3) a_n = 4n + 4$$

$$(4) a_n = 4n + 2$$

$$a_n = 4n + 2$$

$$a_n = 4n + 8$$

- 4. A theater has 35 seats in the first row. Each row has four more seats than the row before it. Which expression represents the number of seats in the *n*th row?
 - (1) 35 + (n + 4)(3) 35 + (n + 1)(4)(2) 35 + (4n)(4) 35 + (n 1)(4)

5. Answer the following questions given the explicit formula $a_n = 2(\frac{1}{4})^{n-1}$ when $n \ge 1$ a) Find a_1, a_2, a_3, a_4

b) State whether the sequence is arithmetic or geometric. Justify your answer.