Unit 1: Exponents!

Base

- Exponent

The value that specifies how many times the base will be multiplied by itself

The number or variable that is being multiplied repeatedly in the expanded form

Name: _

Teacher: <u>Ms. Moser</u> Period: ____

September TUE THU WED FRI SUN MON SAT (Q

Introduction to Exponents

<u>Aim</u>: How can I use exponents to represent repeated multiplication?

1. Write in exponential form: a) $\underbrace{4 \times \cdots \times 4}_{7 \text{ times}} =$	b) $\frac{\frac{7}{2} \times \cdots \times \frac{7}{2}}{\frac{21 \text{ times}}{2}} =$	c) $\underbrace{x \cdot x \cdots x}_{n \ times} =$
--	--	--

2. Tim wrote 16 as $(-2)^4$. Is he correct? Justify your answer.

Date:

Aim: How can I use exponents to represent repeated multiplication?

Write each expression using exponents.

1. $4 \cdot 4 \cdot 4 \cdot 4 =$	2. $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} =$	3. $b \cdot b \cdot b \cdot b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c =$
4. Evaluate 7^3 .	5. Evaluate $(-2)^4$.	6. Evaluate $2 \cdot 3^2 \cdot 4^2$.
	· · · · · · · · ·	· · · · · · · · · /

Lesson 1-2 Multiplying Exponents

Date _____

Multiplying and Dividing Exponents

Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?

Warm Up: What is another way you can abbreviate each expression?

(a) 3+3+3+3+3

(b) $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

Expression	Constant	Coefficient	Base	Variable	Exponent
$6x^2 - 5$					
42					
$10x^3 + 1$					
<i>y</i> ²					

Exercise 1- For the following expressions, name the constant, coefficient, base, variable, & exponent:

Multiplying Exponents Discovery

Exercise 2- For the following expressions, simplify by expanding & re-write in exponential form

Expression	Expanded Form	Exponential Form
$3^2 \cdot 3^4$	$(3\cdot3)\cdot(3\cdot3\cdot3\cdot3)$	36
$x^5 \cdot x^3$	$(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) \cdot (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$	
$5^6 \cdot 5^4$		

	DE: When mu	100	ms with like _ the exp		ou keep the base	
	Probler	n Set: Simplify	the following e	xpressions con	npletely.	
(1)	$x^4 \cdot x^3$	(2)	k ⁵ · k	(3)	$(\frac{1}{7})^6 \cdot (\frac{1}{7})^2$	
(4)	$4y^3 \cdot 8y^2$	(5)	$4^2 \cdot 4^{10} \cdot 4^{-3}$	(6)	$x^3(x^{13}+y^2)$	

Lesson 1-3 Dividing Exponents

Dividing Exponents Discovery Exercise 2- For the following expressions, simplify by expanding then re-write in exponential form

Expression	Expanded Form	Exponential Form
5 ⁶	5.5.5.5.5.5	5 ⁴
<u>5</u> ²	5.5	5
$\frac{x^5}{x^2}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	
$\overline{x^2}$	X·X	
$x^7 y^{10}$		
$\frac{x^7 y^{10}}{x^4 y^6}$		
<u> </u>		
RULE: When dividi	ng terms with like,	you keep the base and
	the exponents.	

Problem Set: Simplify the following expressions completely.

(7) $\frac{6^8}{6}$	(8) $\frac{5^{10}}{5^2}$	$(9) \qquad \frac{3x^9}{3x^6}$
$(10) \qquad \frac{x^5 y^4}{x^2 y}$	(11) $\frac{a^6b}{a^4b}$	(12) $\frac{6m^5n^4}{2m^2n^4}$

	<u>Putting it all toget</u>	her: Simplify the following expr	ressions completely.
(13)	$2^7 \cdot 2 \cdot 2^{-3}$	$(14) \qquad \frac{a^4bc^6}{a^4bc^5}$	(15) $y^4(x^8 + y^3)$
(16)	$2r^4n^3 \cdot 3rn^2$	$(17) \frac{8a^9b^5}{12a^3b^4}$	(18) $\frac{8^{16} \cdot 8^5}{8^{12}}$

(19) Jack and Jill simplify the following expression $\frac{m^3}{m^7}$, below are their responses: **Jack:** m^4 **Jill:** m^{-4}

Determine which student got the correct answer & *explain* the mistake made by the other student.

HW #

Date:

<u>*Aim</u></u>: What conclusions can be drawn when multiplying or dividing exponents with like bases?* Simplify each exponential expression using the laws of exponents. Show all work.</u>

1. $f^{10} \cdot f^{13} =$	2. $5x^{94} \times 5x^{78} =$	3. $\frac{(-5)^{16}}{(-5)^7} =$
4. $\frac{12x^5}{3x^4} =$	5. $(2x^2)(4x^3y^2) =$	6. $(-3a^2b)(6ab^4c) =$
7. (-2x ² z)(-4y ² z)(-3xyz) =	8. $\frac{21d^{18}e^5}{7d^{11}e^3} =$	9. $\frac{-16w^7r^2}{-4wr} =$

Date _____

Zero and Negative Exponent Rules

Aim: How can we create a rule when we have exponents that are zero and negative?

Warm Up: Simplify the following expressions.

(a) $\frac{9y^{16}}{3y^7}$

(b)
$$\frac{5x^3y^6}{xy}$$

Discovery to the Zero Exponent Rule

What happens when you raise a number to a zero power? Look for a pattern as you fill in the table below. Then, evaluate each expression using what you know about dividing a number by itself.

Expression	Expanded Form	Exponential Form	Evaluate		
5 ⁶					
5 ⁶					
x ⁵					
$\overline{x^5}$					
$\frac{(-4)^3}{(-4)^3}$					
$(-4)^3$					
RULE: Any number raised to the power will ALWAYS be					
<i>Note</i> this works when $x \neq 0$					
Exercise 1- Evaluate	the following				

(1) $(-9821)^0$ (2) $(4x)^0$ (3) $4x^0$

Discovery to the Negative Exponent Rule

What happens when you raise a number to a negative power? Look for a pattern in the table below.

Expression	Expanded Form	Exponential Form	As a Fraction
2 ²	2.2		
2 ⁵	$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$		
4 ⁴			
4 ¹⁰			
(- 9) ²			
$(-9)^{7}$			
$\frac{a^6b^5}{a^9b^{12}}$			
$a^{9}b^{12}$			

)
<i>Exercise 2</i> - Write eac (4) 8^{-5}	h expression using a (5) 3^{-9}	a positive exponent (6) z^{-2}	(7)	p^{-4}	^I

<u>Problem Set</u>: Putting it all together.

Simplify each expression and re-write with a *positive* exponent. Show ALL work!

	$(9) \frac{6^8}{6^9}$	
(11) $10x^{-4}y^5$	(12) $\frac{8x^9}{2x}$	$(13) (\frac{3}{4})^{-1}$
(14) $(4x^{-2}y^{5}z^{-3})(5x^{3}y^{-5}z^{-2})$	$(15) 2^2(2^4 + 2^{-8})$	(16) $-x^3y^{-6}$

Determine the missing (?) value in each:

(17)
$$\frac{x^6}{x^7} = x^4$$
 (18) $\frac{2^8}{2^7} = 2^9$

Power to a Power Exponents Rules

Aim: What conclusions can be made when you raise a power to another power?

Warm Up: Simplify the following. Express with positive exponents.

 $\frac{6x^4y^2z^7}{8x^5y^2z^{-1}}$

Discovering the Laws of Exponents: Power to a Power Rule

What happens when you raise a power to a power? Look for a pattern as you fill in the table below.

Example	Write in Expanded Form	Exponential Form
$(2^3)^2$		
(3 ²) ⁴		
$(5^4)^3$		
$[(\frac{1}{2})^2]^5$		

 RULE: When you raise a pov	wer to a power, keep the	, , ,
 and	the exponents.	

Practice: Simplify the following expressions.

(1)	$(5^2)^3$	(2)	$(x^5)^4$	(3)	$(y^4)^{-3}$	(4)	$(6^2)^2 \cdot 6^{-5}$

Discovering the Laws of Exponents: Product to a Power Rule

What happens w	when you raise a	product to a j	power? Look for a	pattern in the table below.

Example	Write in Expanded Form	Exponential Form
$(2 \cdot 3)^3$	$(2 \cdot 3) \cdot (2 \cdot 3) \cdot (2 \cdot 3)$ $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$	2 ³ 3 ³
$(4 \cdot 6)^5$		
(6 <i>a</i>) ⁴		
$(7 \cdot 4 \cdot 11)^2$		

Problem Set: Simplify the following expressions. Use only positive exponents.

(5) $(7^3)^4$	(6) (2	-1)0	(7)	$(-2^{7})^{2} \cdot (-2)^{-1}$	(8) (-3	⁵ y ⁵) ²
(9) $(2x^3y^{-2}z^4)^3$	(10) (6	-2)3	(11)	$(x^4 \cdot x^2)^2$	(12)	$(2a^3b^{-2})^3$
(13) The formula for the width is 8^{-2} , and the		•	-			gth is 8 ⁴ , the

More Practice with the Power Rule...

Simplify. Your answer should contain only positive exponents.

1)	(3a ²) ³	2)	(2n ⁴) ⁴	3)	(3x ⁴) ⁴
4)	(6b ²) ²	5)	(7y ⁴) ²	6)	(3ab ⁴) ²
7)	(2x ⁴ y ⁴) ³	8)	(x ² y ²) ²	9)	(3x · 2x) ²
10)	(4n ² · n ²) ²	11)	(2p ³ · 2p) ²	12)	(u ⁴ v ³) ²
13)	(h · 4h ² · h ³) ²	14)	(4g · 2g²)³	15)	(3k ³ · 4k · k ²) ²

```
Date _____
```


NEGATIVE
EXPONENTS

1)
$$\frac{1}{g^{-3}} =$$
2) $\frac{x^{-7}}{x^5} =$
3) $\frac{p}{p^{-4}} =$

4) $\frac{11^{-2}}{11^8} =$
5) $\frac{b^{-4}}{b^{-7}} =$
6) $\frac{y^6}{y^{10}} =$

POWER TO A
POWERTo raise a power to a power, keep the base and
the exponents.1)
$$(x^2)^3 =$$
2) $(5^2)^3 =$ 3) $(k^9)^5 (k^3)^2 =$ 4) $(-y^5)^4 =$ 5) $(w^{-21})^{-15} =$

ZERO EXPONENT	Any number raised to t	the zero power is equal to
1) b ⁰ =	2) 5x ⁰ =	$(3)\frac{y^4}{y^4} =$

Exponents and Their Properties - Multiplying and Dividing Monomials Algebra 1 Homework

Skill	l	17.	$\frac{x^{13}y^5}{r^2y^9} =$
	ess the product with exponents. $a \cdot a \cdot a \cdot b \cdot b =$		
	(2x)(2x)(2x) =	18.	$\frac{8x^5y^3}{4x^8y^{10}} =$
3.	$(2x)(2x)y \cdot y =$	19.	$\frac{y^4}{y^4} =$
4.	ess the product in simplest form. $b^3 \cdot b =$	Reas Simpl	s oning lify.
5.	$y^4 \cdot y^9 =$	20.	$\frac{x^c}{x^d} = c > d$
	$x^2 \cdot x^3 \cdot x^4 =$ $n^4 \cdot n =$	21.	$z(2z)^3(2z) =$
	$y \cdot y =$	22.	$x^{4a} \cdot x^{2a} =$
9.	$a^4 \cdot a^2 =$	23.	$\frac{x^3 \cdot x^6 \cdot x^4}{x^5 \cdot x^2} =$
	$x^3 \cdot x^7 =$ $z^4 \cdot z^4 =$	24.	$\frac{y^{2a} \cdot y^{3a}}{y^a} =$
_	ess the quotient in simplest form. $\frac{x^5}{x^4} =$	25.	$\frac{x^3 \cdot x^4}{\left(x^2\right)^2} =$
14.	$\frac{a^{10}}{a^4} =$		$x^4 \cdot y^5 =$ mine True or False for each.
15.	$\frac{x^5}{x^8} =$		the reason for your answer. $\frac{x^4}{x^2} = 1^2$
16.	$\frac{y^6}{y^{12}} =$	28.	$\frac{4^5}{2^3} = 2^2$

27.
$$\frac{x^4}{x^2} = 1^2$$

28.
$$\frac{4^5}{2^3} = 2^2$$

Date:_____

Laws of Exponents	Mixed	Practice
-------------------	-------	----------

Simplify each expression. Express your answer using positive exponents. Show all work.

Simplify each expression. Express your answer using positive exponents. Show an work.				
1. $xy^{-3} \cdot x^{-6}y^4$	2. $3x^3y \cdot 8x^5y^4$	3. $\frac{ab^{-5}}{ab^8}$		
4. $\frac{a^5b^{10}}{a^8y^3}$	5. $5m^6 \cdot m^5 n$	6. $(-5x^3y^{12}z^6)(-6x^3y^5z^{-6})$		

Determine if the sentence is true or false by simplifying the exponential expression. Show your work and clearly write your answer.

7. $3^2 \cdot 2^2 = 6^5$	8. $3^2 \cdot 2^2 = 6^6$	9. $6^2 \cdot 6^2 = 6^4$

- **1.** Which is equivalent to $(6^2)^{0?}$
 - **a.** 0
 - **b.** 1
 - **c.** 6
 - **d.** 36

- 5. Which number goes in the numerator to make this equation true?
 - $\frac{1}{2^{-6}} = 2^3$ **a.** 2⁻² **b.** 2⁻³
 - **c.** 2⁻⁹
 - **d.** 2⁻¹⁸
- 6. Which expression is equivalent to $4^7 \times 4^{-5}$?
 - **a.** 4¹²
 - **b.** 4²
 - **c.** 4⁻²
 - **d.** 4⁻³⁵
- **7.** Which number is equivalent to $\frac{3^4}{3^2}$?
- **b.** 9

a. 2

- **c.** 81
- **d.** 729
- 8. Which expression is equivalent to (5⁻²)⁵ x 5⁴?
 - **a.** 5¹² **b.** 5⁷ **c.** $\frac{1}{5^6}$ **d.** $\frac{1}{5^{40}}$

17

- **2.** Simplify: $5^{-8} \ge 5^{4}$
 - **a.** $\frac{1}{5^4}$ **b.** $\frac{1}{5^{32}}$ **c.** -5^2 **d.** -5^{12}
- **3.** Which exponential expression is equal to $2^{-5} \ge 2^{8}$?
 - **a.** $\frac{2^2}{2^{-1}}$ **b.** $(2^3)^{-1}$ **c.** $\frac{2^{-2}}{2^{-1}}$
 - **d.** $(2^{-1})^3$
- **4.** What is the correct value of the expression $\left(-\frac{1}{4}\right)^{-2}$?
 - **a.** -16 **b.** $-\frac{1}{16}$ **c.** $\frac{1}{16}$ **d.** 16