$$
\begin{aligned}
& \text { Unit I: } \\
& \text { Exponents! }
\end{aligned}
$$

 Exponent
The value that
specifies how many times the base will be multiplied by itself

Base

The number or variable that is being multiplied repeatedly in the expanded form

Name:
Teacher: Ms. Moser Period:

\qquad

Introduction to Exponents

Aim: How can I use exponents to represent repeated multiplication?

- Factors are the numbers that you are \qquad -.

- When factors are the \qquad , you can simplify it by using an \qquad .

$$
2 \cdot 2 \cdot 2 \cdot 2=16
$$

$$
2^{4}=16
$$

- Numbers written with exponents are called \qquad .

Powers	In words...

Exponential Form			
Expanded Form			
Standard Form			

1. Write in exponential form: a) $\underbrace{4 \times \cdots \times 4}_{7 \text { times }}=$
b) $\underbrace{\frac{7}{2} \times \cdots \times \frac{7}{2}}_{21 \text { times }}=$
c) $\underbrace{x \cdot x \cdots x}_{\mathrm{n} \text { times }}=$
2. Tim wrote 16 as $(-2)^{4}$. Is he correct? Justify your answer.
\qquad Date:
Aim: How can I use exponents to represent repeated multiplication?
Write each expression using exponents.

1. $4 \cdot 4 \cdot 4 \cdot 4=$	2. $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=$	3. $\mathrm{b} \cdot \mathrm{b} \cdot \mathrm{b} \cdot \mathrm{b} \cdot \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{c}=$
4. Evaluate 73.	5. Evaluate $(-2)^{4}$.	6. Evaluate $2 \cdot 3^{2} \cdot 4^{2}$.

Lesson 1-2 Multiplying Exponents
Date \qquad

Multiplying and Dividing Exponents

Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?
Warm Up: What is another way you can abbreviate each expression?
(a) $3+3+3+3+3$
(b) $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

Exercise 1- For the following expressions, name the constant, coefficient, base, variable, \& exponent:

Expression	Constant	Coefficient	Base	Variable	Exponent
$6 x^{2}-5$					
4^{2}					
$10 x^{3}+1$					
y^{2}					

Multiplying Exponents Discovery

Exercise 2- For the following expressions, simplify by expanding \& re-write in exponential form

Expression	Expanded Form	Exponential Form
$\mathbf{3}^{\mathbf{2}} \cdot \mathbf{3}^{\mathbf{4}}$	$(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3 \cdot 3)$	3^{6}
$\boldsymbol{x}^{\mathbf{5}} \cdot \boldsymbol{x}^{\mathbf{3}}$	$(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \cdot(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})$	
$\mathbf{5}^{\mathbf{6} \cdot \mathbf{5}^{\mathbf{4}}}$		

RULE: When multiplying terms with like \qquad , you keep the base and \qquad the exponents.

Problem Set: Simplify the following expressions completely.

(1) $x^{4} \cdot x^{3}$	(2)	$k^{5} \cdot k$	(3)	$\left(\frac{1}{7}\right)^{6} \cdot\left(\frac{1}{7}\right)^{2}$	
(4)	$4 y^{3} \cdot 8 y^{2}$	(5)	$4^{2} \cdot 4^{10} \cdot 4^{-3}$	(6)	$x^{3}\left(x^{13}+y^{2}\right)$

Lesson 1-3 Dividing Exponents

Dividing Exponents Discovery

Exercise 2-For the following expressions, simplify by expanding then re-write in exponential form

Expression	Expanded Form	Exponential Form
$\frac{\mathbf{5}^{\mathbf{6}}}{\mathbf{5}^{\mathbf{2}}}$	$\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5}$	5^{4}
$\frac{\boldsymbol{x}^{\mathbf{5}}}{\boldsymbol{x}^{\mathbf{2}}}$	$\frac{\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}}{\mathrm{x} \cdot \mathrm{x}}$	
$\frac{\boldsymbol{x}^{7} \boldsymbol{y}^{\mathbf{1 0}}}{\boldsymbol{x}^{4} \boldsymbol{y}^{\mathbf{6}}}$		

Problem Set: Simplify the following expressions completely.

(7)	$\frac{6^{8}}{6}$	(8)	$\frac{5^{10}}{5^{2}}$	(9)	$\frac{3 x^{9}}{3 x^{6}}$
(10)	$\frac{x^{5} y^{4}}{x^{2} y}$	(11) $\frac{a^{6} b}{a^{4} b}$	(12) $\frac{6 m^{5} n^{4}}{2 m^{2} n^{4}}$		

Putting it all together: Simplify the following expressions completely.

(13) $22^{7} \cdot 2 \cdot 2^{-3}$	(14)	$\frac{a^{4} b c^{6}}{a^{4} b c^{5}}$	(15)	$y^{4}\left(x^{8}+y^{3}\right)$
(16)	$2 r^{4} n^{3} \cdot 3 r n^{2}$	(17)	$\frac{8 a^{9} b^{5}}{12 a^{3} b^{4}}$	(18)

(19) Jack and Jill simplify the following expression $\frac{m^{3}}{m^{7}}$, below are their responses:
Jack: m^{4}
Jill: $\quad m^{-4}$

Determine which student got the correct answer \& explain the mistake made by the other student.

HW \# \qquad Date: \qquad
Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?
Simplify each exponential expression using the laws of exponents. Show all work.

1. $\mathrm{f}^{10} \cdot \mathrm{f}^{13}=$	2. $5 \mathrm{x}^{94} \times 5 \mathrm{x}^{78}=$	3. $\frac{(-5)^{16}}{(-5)^{7}}=$
4. $\frac{12 \mathrm{x}^{5}}{3 \mathrm{x}^{4}}=$	5. $\left(2 \mathrm{x}^{2}\right)\left(4 \mathrm{x}^{3} \mathrm{y}^{2}\right)=$	6. $\left(-3 \mathrm{a}^{2} \mathrm{~b}\right)\left(6 \mathrm{ab}{ }^{4} \mathrm{c}\right)=$
7. $\left(-2 \mathrm{x}^{2} z\right)\left(-4 \mathrm{y}^{2} \mathrm{z}\right)(-3 \mathrm{xyz})=$	8. $\frac{21 \mathrm{~d}^{18} \mathrm{e}^{5}}{7 \mathrm{~d}^{11} \mathrm{e}^{3}}=$	9. $\frac{-16 \mathrm{w}^{7} \mathrm{r}^{2}}{-4 \mathrm{wr}}=$

\qquad

Zero and Negative Exponent Rules

Aim: How can we create a rule when we have exponents that are zero and negative?
Warm Up: Simplify the following expressions.
(a) $\frac{9 y^{16}}{3 y^{7}}$
(b) $\frac{5 x^{3} y^{6}}{x y}$

Discovery to the Zero Exponent Rule

What happens when you raise a number to a zero power? Look for a pattern as you fill in the table below. Then, evaluate each expression using what you know about dividing a number by itself.

Expression	Expanded Form	Exponential Form	Evaluate
$\frac{5^{6}}{5^{6}}$			
$\frac{x^{5}}{x^{5}}$			
$\frac{(-4)^{3}}{(-4)^{3}}$			
LE: Any	raised to the Note this w	power will AL $\text { hen } x \neq 0$	e

Exercise 1-Evaluate the following
(1)
$(-9821)^{0}$
(2)
$(4 x)^{0}$
(3) $4 x^{0}$

Discovery to the Negative Exponent Rule

What happens when you raise a number to a negative power? Look for a pattern in the table below.

Expression	Expanded Form	Exponential Form	As a Fraction
$\frac{\mathbf{2}^{\mathbf{2}}}{\mathbf{2}^{\mathbf{5}}}$	$\frac{2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$		
$\frac{\mathbf{4}^{4}}{\mathbf{4}^{\mathbf{1 0}}}$			
$\frac{(-9)^{2}}{(-9)^{7}}$			
$\frac{a^{6} b^{5}}{\boldsymbol{a}^{9} b^{12}}$			

Exercise 2- Write each expression using a positive exponent
(4) 8^{-5}
(5) 3^{-9}
(6) z^{-2}
(7) $\quad p^{-4}$

Problem Set: Putting it all together.
Simplify each expression and re-write with a positive exponent. Show ALL work!

(8) $7 a^{0} b^{3}$	(9) $\frac{6^{8}}{6^{9}}$	$(10) 8 x^{-2}$	
$(11) 10 x^{-4} y^{5}$	$(12) \frac{8 x^{9}}{2 x}$	$(13)\left(\frac{3}{4}\right)^{-1}$	
$(14)\left(4 x^{-2} y^{5} z^{-3}\right)\left(5 x^{3} y^{-5} z^{-2}\right)$	(15)	$2^{2}\left(2^{4}+2^{-8}\right)$	$(16)-x^{3} y^{-6}$

Determine the missing (?) value in each:

$$
\text { (17) } \frac{x^{6}}{x^{?}}=x^{4}
$$

(18) $\quad \frac{2^{8}}{2^{?}}=\quad 2^{9}$

- Anything raised to the zero power is always \qquad -.
- When you have negative exponents, in order to make them positive you:
$H W$ \# \qquad Date: \qquad
Aim: How can we create a rule for exponents that are zero and negative?
Simplify each expression. Write solution without zero or negative exponents.

1. -3^{0}	2. $8 \mathrm{k}^{0}$	3. $(-5)^{-2}$
4. 2^{-4}	5. $5 \mathrm{x}^{-4}$	6. $\frac{\mathrm{x}^{5}}{\mathrm{y}^{-3}}$
7. $\frac{\mathrm{a}^{-4}}{\mathrm{~b}^{-3}}$	8. $2 \mathrm{x}^{-1} \mathrm{y}^{-4}$	9. $\frac{\mathrm{x}^{2}}{2 \mathrm{y}^{-3}}$

10. Which of the following is correct? Explain why the other choice is incorrect.
a. $2 \mathrm{x}^{-3}=\frac{1}{2 \mathrm{x}^{3}}$
b. $\quad 2 \mathrm{x}^{-3}=\frac{2}{\mathrm{x}^{3}}$
\qquad

Power to a Power Exponents Rules

Aim: What conclusions can be made when you raise a power to another power?
Warm Up: Simplify the following. Express with positive exponents.

$$
\frac{6 x^{4} y^{2} z^{7}}{8 x^{5} y^{2} z^{-1}}
$$

Discovering the Laws of Exponents: Power to a Power Rule What happens when you raise a power to a power? Look for a pattern as you fill in the table below.

Example	Write in Expanded Form	Exponential Form
$\left(2^{3}\right)^{2}$		
$\left(3^{2}\right)^{4}$		
$\left(5^{4}\right)^{3}$		
$\left[\left(\frac{1}{2}\right)^{2}\right]^{5}$		

Practice: Simplify the following expressions.

(1)	$\left(5^{2}\right)^{3}$	(2)	$\left(x^{5}\right)^{4}$	(3)	$\left(y^{4}\right)^{-3}$	(4)

Discovering the Laws of Exponents: Product to a Power Rule

What happens when you raise a product to a power? Look for a pattern in the table below.

Example	Write in Expanded Form	Exponential Form
$(2 \cdot 3)^{3}$	$(2 \cdot 3) \cdot(2 \cdot 3) \cdot(2 \cdot 3)$	$2^{3} 3^{3}$
$(4 \cdot 6)^{5}$	$2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$	
$(6 a)^{4}$		
$(7 \cdot 4 \cdot 11)^{2}$		

1	R ULE: When finding a product raised to a power,
1	you find the power of each factor and then
1	

Problem Set: Simplify the following expressions. Use only positive exponents.

(5)	$\left(7^{3}\right)^{4}$	(6)	$\left(2^{-1}\right)^{0}$	(7)	$\left(-2^{7}\right)^{2} \cdot(-2)^{-1}$	(8)	$\left(-3 y^{5}\right)^{2}$
(9)	$\left(2 x^{3} y^{-2} z^{4}\right)^{3}$	(10)	$\left(6^{-2}\right)^{3}$	(11)	$\left(x^{4} \cdot x^{2}\right)^{2}$	(12)	$\left(2 a^{3} b^{-2}\right)^{3}$

(13) The formula for the volume of a rectangular prism is $V=L W H$. If the length is 8^{4}, the width is 8^{-2}, and the height is 8^{0}. Express the volume, in exponential form.

More Practice with the Power Rule...

Simplify. Your answer should contain only positive exponents.

\qquad

$\boldsymbol{P R O D U C T ~ R U L E ~}$	KEEP THE \quad THE COEFFICIENTS,
1) $10^{12} \bullet 10^{35}=$	2) $a^{7} \cdot a^{12}=$
3) $x^{2} \cdot z^{2}=$	
4) $\left(3 x^{8}\right)(5 \mathrm{x})=$	5) $-5 y^{3}\left(-8 y^{6}\right)=$

QUOTIENT RULE	\qquad THE COEFFICIENTS, KEEP THE \qquad SUBTRACT THE
1) $\frac{10^{6}}{10^{2}}=$	2) $\frac{9^{210}}{9^{207}}=\quad$ 3) $\frac{6 r^{3}}{2 r}=$
4) $\frac{-40 s^{6}}{20 s^{3}}=$	$\begin{array}{ll}\text { 5) } \frac{-16 w^{7} r^{2}}{-4 w r}= & \text { 6) } \frac{x^{3} y}{x y^{3}}=\end{array}$

NEGATIVE	
EXPONENTS	

1) $\frac{1}{g^{-3}}=$
2) $\frac{x^{-7}}{x^{5}}=$
3) $\frac{p}{p^{-4}}=$
4) $\frac{11^{-2}}{11^{8}}=$
5) $\frac{b^{-4}}{b^{-7}}=$
6) $\frac{y^{6}}{y^{10}}=$

POWER TO A POWER	To raise a power to a power, keep the base and
1) $\left(x^{2}\right)^{3}=$	2) $\left(5^{2}\right)^{3}=$
3) $\left(k^{9}\right)^{5}\left(k^{3}\right)^{2}=$	
4) $\left(-y^{5}\right)^{4}=$	5) $\left(w^{-21}\right)^{-15}=$

PRODUCT TO A POWER	To raise a product to a power, raise each factor to the power, then
1) $\left(8 c^{5}\right)^{2}=$	2) $\left(4 y^{3}\right)^{2}=$
4) $\left(-c^{5} h^{6}\right)^{4}=$	
4) $\left(y^{4} d^{6}\right)^{8}=$	5) $\left(-15 h^{9} k^{7}\right)^{3}=$

Any number raised to the zero power is equal to \qquad .

1) $\mathrm{b}^{0}=$
2) $5 x^{0}=$
3) $\frac{y^{4}}{y^{4}}=$

Exponents and Their Properties - Multiplying and Dividing Monomials Algebra 1 Homework

Skill

Express the product with exponents.

1. $a \cdot a \cdot a \cdot b \cdot b=$
2. $(2 x)(2 x)(2 x)=$
3. $(2 x)(2 x) y \cdot y=$

Express the product in simplest form.
4. $b^{3} \cdot b=$
5. $y^{4} \cdot y^{9}=$
6. $x^{2} \cdot x^{3} \cdot x^{4}=$
7. $n^{4} \cdot n=$
8. $y \cdot y=$
9. $a^{4} \cdot a^{2}=$
10. $x^{3} \cdot x^{7}=$
11. $z^{4} \cdot z^{4}=$

Express the quotient in simplest form.
13. $\frac{x^{5}}{x^{4}}=$
14. $\frac{a^{10}}{a^{4}}=$
15. $\frac{x^{5}}{x^{8}}=$
16. $\frac{y^{6}}{y^{12}}=$
17. $\frac{x^{13} y^{5}}{x^{2} y^{9}}=$
18. $\frac{8 x^{5} y^{3}}{4 x^{8} y^{10}}=$
19. $\frac{y^{4}}{y^{4}}=$

Reasoning
Simplify.
20. $\frac{x^{c}}{x^{d}}=\quad c>d$
21. $z(2 z)^{3}(2 z)=$
22. $x^{4 a} \cdot x^{2 a}=$
23. $\frac{x^{3} \cdot x^{6} \cdot x^{4}}{x^{5} \cdot x^{2}}=$
24. $\frac{y^{2 a} \cdot y^{3 a}}{y^{a}}=$
25. $\frac{x^{3} \cdot x^{4}}{\left(x^{2}\right)^{2}}=$
26. $x^{4} \cdot y^{5}=$

Determine True or False for each.
State the reason for your answer.
27. $\frac{x^{4}}{x^{2}}=1^{2}$
28. $\frac{4^{5}}{2^{3}}=2^{2}$
\qquad

Laws of Exponents Mixed Practice

Simplify each expression. Express your answer using positive exponents. Show all work.

1. $x y^{-3} \cdot x^{-6} y^{4}$	2. $3 x^{3} y \cdot 8 x^{5} y^{4}$	3. $\frac{a b^{-5}}{a b^{8}}$
4. $\frac{a^{5} b^{10}}{a^{8} y^{3}}$	5. $5 m^{6} \cdot m^{5} n$	6. $\left(-5 x^{3} y^{12} z^{6}\right)\left(-6 x^{3} y^{5} z^{-6}\right)$

Determine if the sentence is true or false by simplifying the exponential expression. Show your work and clearly write your answer.

7. $3^{2} \cdot 2^{2}=6^{5}$	8. $3^{2} \cdot 2^{2}=6^{6}$	$6^{2} \cdot 6^{2}=6^{4}$	

1. Which is equivalent to $\left(6^{2}\right)^{0}$?
a. 0
b. 1
c. 6
d. 36
2. Simplify: $5^{-8} \times 5^{4}$
a. $\frac{1}{5^{4}}$
b. $\frac{1}{5^{32}}$
c. -5^{2}
d. -5^{12}
3. Which number goes in the numerator to make this equation true?

$$
\overline{2^{-6}}=2^{3}
$$

a. 2^{-2}
b. 2^{-3}
c. 2^{-9}
d. 2^{-18}
6. Which expression is equivalent to $4^{7} \times 4^{-5}$?
a. 4^{12}
b. 4^{2}
c. 4^{-2}
d. 4^{-35}
3. Which exponential expression is equal to $2^{-5} \times 2$?
7. Which number is equivalent to $\frac{3^{4}}{3^{2}}$?
a. 2
b. 9
c. 81
d. 729
8. Which expression is equivalent to $\left(5^{-2}\right)^{5} \times 5^{4}$?
a. 5^{12}
b. 5^{7}
c. $\frac{1}{5^{6}}$
d. $\frac{1}{5^{40}}$

