\qquad DD MDMAim: How can I use exponents to represent repeated multiplication? Write each expression using exponents.

Jordyn

\qquad
Multiplying and Dividing Exponents
Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?
Warm Up: What is another way you can abbreviate each expression?
(a) $3+3+3+3+3$

Rerpaidion 3×5
Exercise 1-For the following expressions, name the constant, coefficient, base, variable, \& exponent:

Exercise 2- For the following expressions, simplify by expanding \& re-write in exponential form

Expression	Expanded Form	Exponential Form
$\mathbf{3}^{2} \cdot \mathbf{3}^{4}$	$(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3 \cdot 3)$	3^{6}
$\boldsymbol{x}^{5} \cdot \boldsymbol{x}^{\mathbf{3}}$	$(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \cdot(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})$	\mathbf{x}^{8}
$\mathbf{5}^{\mathbf{6} \cdot \mathbf{5}^{\mathbf{4}}}$		5^{10}

RULE: When multiplying terms with like bases, you keep the base and $A D D$ the exponents.

Problem Set: Simplify the following expressions completely.

(1) $x^{x^{4} \cdot x^{3}}$	(2) $k^{5} \cdot k^{4}$	$\text { (3) } \begin{aligned} & \left(\frac{1}{7}\right)^{6} \cdot\left(\frac{1}{7}\right)^{2} \\ & \left(\frac{1}{7}\right)^{8} \end{aligned}$
(4) $\begin{aligned} & 4 y^{3} \cdot 8 y^{2} \\ & 32 y^{5} \end{aligned}$	(5) $4^{2} \cdot 4^{10} \cdot 4^{-3}$	$\text { (6) } \quad \begin{aligned} & x^{3}\left(x^{1 / 3}+y^{2}\right) \\ & x^{16}+x^{3} \cdot y^{2} \end{aligned}$

Lesson 1-3 Dividing Exponents
Dividing Exponents Discovery
Exercise 2-For the following expressions, simplify by expanding then re-write in exponential form

Expression	Expanded Form	Exponential Form
$\frac{5^{6}}{5^{2}}$	$\frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5}$	5^{4}
$\frac{x^{5}}{x^{2}}$	$\frac{x \cdot x \cdot x \cdot x}{x \cdot x}$	x^{3}
$\frac{x^{7}}{x^{4}} \frac{y^{10}}{y^{6}}$	$x^{3} y^{4}$	

RULE: When dividing terms with like baSeS, you keep the base and ' subtract the exponents. -------------------------------- Divide coefficient

Problem Set: Simplify the following expressions completely.

(7) $\quad \frac{6^{8}}{6^{1}}=6^{7}$	(8)	$\frac{5^{10}}{5^{2}}$	58	(9)	$\frac{3 x^{9}}{3 x^{6}}=1 x^{3}$
(10)	$\frac{x^{5} y^{4}}{x^{2} y^{1}}$	$x^{3} y^{3}$	(11)	$\frac{a^{6} b^{1}}{a^{4} b^{1}}$	
$a^{2} b^{\circ}=$	a^{2}	(12) $\frac{6 m^{5} h^{4}}{2 m^{2} n^{4}}$ $3 m^{3} n^{0}$			

Putting it all together: Simplify the following expressions completely.

(13) $2^{7} \cdot 2^{1} \cdot 2^{-3}$	$a^{0} b^{\circ} c^{\circ}=c$	(15)	$y^{4}\left(x^{8}+y^{3}\right)$
$\text { (16) } \quad \begin{aligned} & \underline{2} r^{4} n^{3} \cdot \underline{3} r^{\prime} n^{2} \\ & \\ & 6 r^{5} n^{5} \end{aligned}$	$\begin{aligned} & \text { (17) } \frac{8 a^{9} a^{5}}{12 b^{5} b^{4}}=\frac{2}{3} a^{6} b^{1} \\ & \frac{8 \div 4}{12 \div 4}=\frac{2}{3} \end{aligned}$	(18)	$\frac{8^{16 \cdot 8^{5}}}{8^{12}}$

(19) Jack and Jill simplify the following expression $\frac{m^{3}}{m^{7}}$, below are their responses:
Jack: m^{4}
Jill: m^{-4}

Determine which student got the correct answer \& explain the mistake made by the other student.

HW \# \qquad Date: \qquad
Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?
Simplify each exponential expression using the laws of exponents. Show all work.

1. $\mathrm{f}^{10} \cdot \mathrm{f}^{13}=$	2. $5 \mathrm{x}^{94} \times 5 \mathrm{x}^{78}=$	3. $\frac{(-5)^{16}}{(-5)^{7}}=$
4. $\frac{12 \mathrm{x}^{5}}{3 \mathrm{x}^{4}}=$	5. $\left(2 \mathrm{x}^{2}\right)\left(4 \mathrm{x}^{3} \mathrm{y}^{2}\right)=$	6. $\left(-3 \mathrm{a}^{2} \mathrm{~b}\right)\left(6 \mathrm{ab}^{4} \mathrm{c}\right)=$
7. $\left(-2 \mathrm{x}^{2} \mathrm{z}\right)\left(-4 \mathrm{y}^{2} \mathrm{z}\right)(-3 \mathrm{xyz})=$	8. $\frac{21 \mathrm{~d}^{18} \mathrm{e}^{5}}{7 \mathrm{~d}^{11} \mathrm{e}^{3}}=$	9. $\frac{-16 \mathrm{w}^{7} \mathrm{r}^{2}}{-4 \mathrm{wr}}=$

