

Lesson 1-2 Multiplying Exponents

Date

Multiplying and Dividing Exponents

Aim: What conclusions can be drawn when multiplying or dividing exponents with like bases?

simplify **Warm Up**: What is another way you can abbreviate each expression?

Exercise 1- For the following expressions, name the constant, coefficient, base, variable, & exponent:

Expression	Constant	Coefficient	Base	Variable	Exponent
$6x^2 - 5$	-5	6	X	X	2
4 ²	4²		4		2
$10x^3 + 1$		10	X	X	3
y ²			<u>ع</u>	.y	2
	Lalain H				

mult. w/var |# w/exponent |

Variab Multiplying Exponents Discovery

Exercise 2- For the following expressions, simplify by expanding & re-write in exponential form

Expression	Expanded Form	Exponential Form
3 ² · 3 ⁴	$(3\cdot3)\cdot(3\cdot3\cdot3\cdot3)$	36
$x^5 \cdot x^3$	$(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) \cdot (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$	χ^{s}
$5^6 \cdot 5^4$		5 ^{°°}

Lesson 1-3 Dividing Exponents

Dividing Exponents Discovery

Exercise 2- For the following expressions, simplify by expanding then re-write in exponential form

Expression	Expanded Form	Exponential Form				
5 ⁶ 5 ²	555	5 ⁴				
$\frac{x^5}{x^2}$	X·X·X·X·X X·X	X ³				
$\frac{x^7 y^{10}}{x^4 y^6}$	$\chi^{3}y^{4}$					
RULE: When dividing terms with like <u>bases</u> , you keep the base and <u>Subtract</u> the exponents.						

Problem Set: Simplify the following expressions completely.

(7) $\frac{6^8}{6^4}$ =	ຝີ	(8)	$\frac{5^{10}}{5^2}$ 5	(9)	$\frac{3x^9}{3x^6} = 1\chi^3$
(10) $\frac{x^5 y^4}{x^2 y'}$	$\chi^{3}y^{3}$	(11)	$\frac{\frac{a^{6}b^{l}}{a^{4}b^{l}}}{\mathcal{O}l^{2}b^{\circ}} = \boxed{\mathcal{O}l^{2}}$	(12)	$\frac{6m^{5}h^{4}}{2m^{2}n^{4}}$ $3m^{3}n^{\circ}$

<u>Putting it all together</u> : Simplify the following expressions completely.				
$\begin{array}{c} (13) \qquad 2^7 \cdot 2^{!} \cdot 2^{-3} \\ \qquad $	(14) $\frac{a^{\frac{1}{6}b^{\frac{6}{5}}}}{a^{\frac{4}{6}c^{5}}}$ $a^{\circ}b^{\circ}C^{\circ} = C$	(15) $y^4(x^8 + y^3)$		
(16) $2r^4n^3 \cdot 3rn^2$ $6r^5n^5$	(17) $\frac{8a^{9}b^{5}}{12a^{3}b^{4}}$ $\frac{2}{3}a^{5}b^{5}}{\frac{8}{12}a^{4}}$ $\frac{2}{3}a^{5}b^{5}}{\frac{8}{12}a^{4}}$	(18) $\frac{8^{16} \cdot 8^5}{8^{12}}$		

(19) Jack and Jill simplify the following expression $\frac{m^3}{m^7}$, below are their responses: **Jack:** m^4 **Jill:** m^{-4}

Determine which student got the correct answer & *explain* the mistake made by the other student.

HW

Date:

<u>*Aim</u></u>: What conclusions can be drawn when multiplying or dividing exponents with like bases?* Simplify each exponential expression using the laws of exponents. Show all work.</u>

1. $f^{10} \cdot f^{13} =$	2. $5x^{94} \times 5x^{78} =$	3. $\frac{(-5)^{16}}{(-5)^7} =$
4. $\frac{12x^5}{3x^4} =$	5. $(2x^2)(4x^3y^2) =$	6. $(-3a^2b)(6ab^4c) =$
7. (-2x ² z)(-4y ² z)(-3xyz) =	8. $\frac{21d^{18}e^5}{7d^{11}e^3} =$	9. $\frac{-16w^7r^2}{-4wr} =$