Name:

Lesson 3: The Method of Double Distribution

• **Objective:** Students will be able to identify equivalent algebraic expressions by applying the distributive property of multiplication.

Warm Up: Consider the product (x - 2)(x + 5). It is equivalent to one of the expressions below. Determine which by substituting in the given values for *x*.

Modeling: Write the following expressions as equivalent trinomials (*an expression involving three terms*) using the method of double distribution.

Group Task:

- 1) When reading some schematics of a rectangular garden, you notice the binomial x + 8 represents the length and the binomial x 1 represents the width.
 - (a) Write an expression that represents the total area of the garden in the form $x^2 + bx + c$.

(b) Check the equivalency of your expression by substituting two values for x.

	(x+8)(x-1)	Your Expression from Part A
x = 3		
x = 10		

2) Mariah thinks that the following rule should always hold true. Do you agree? Find evidence for or against the following equivalency rule by substituting values in for *a* and *b*.

$$(a+b)^2 = a^2 + b^2$$

Extension: Create an equivalent trinomial for $(a + b)^2$ using the method of double distribution.

Homework: The Method of Double Distribution

1) Rewrite each expression below in simplest form by applying the distributive property of multiplication.

(a)
$$(x+3)(x+6)$$
 (b) $(3x-4)(3x+2)$

(c)
$$(x+3)(x-3)$$

(d) $(4x-5)^2$ $(4x-5)(4x-5)$
 $16x^2-20x+25$
 $16x^2-40x+25$

 \leq

2) If the sides of a rectangle are 4x + 9 and x - 8, express the area of the rectangle as a polynomial. Then, show that the expressions are equivalent by letting x = 3.

<u>Bonus Question</u>: If the edge of a cube is x - 1, express the *volume* of the cube as a polynomial. Then, show that the expressions are equivalent by letting x = 3.