Name: \qquad

Lesson 3: The Method of Double Distribution

- Objective: Students will be able to identify equivalent algebraic expressions by applying the distributive property of multiplication.

Warm Up: Consider the product $(x-2)(x+5)$. It is equivalent to one of the expressions below. Determine which by substituting in the given values for x.

	$(x-2)(x+5)$	$x^{2}>0$	$x^{2}+3 x-10$
$x=3$	$(3-2)(3+5)$	$(3)^{2}-10$	$(3)^{2}+3(3)-10$
	$(1) \cdot(8)$	$9-10$	$9+9-10$
$x=5$	$\boxed{8}$	$\boxed{8}$	

Modeling: Write the following expressions as equivalent trinomials (an expression involving three terms) using the method of double distribution.

Independent Task \#1: Which of the following expressions is equivalent to the product $(x-2)(x-4)$?
(1) $x^{2}+8$
(2) $x^{2}-6 x-8$
(3) $x^{2}-6 x+8$
(4) $x^{2}-8$

Independent Task \#2: Which of the following expressions is equivalent to
(1) $x^{2}+49$
(2) $(x-7)(x+7)$
(3) $x^{2}+14 x+49$
(4) $49 x^{2}$

Group Task:

1) When reading some schematics of a rectangular garden, you notice the binomial $x+8$ represents the length and the binomial $x-1$ represents the width.
(a) Write an expression that represents thetoratea of the garden in the form $x^{2}+b x+c$.

(b) Check the equivarency of your expression by substituting two values for x.

	$(x+8)(\mathrm{x}-1)$	Your Expression from Part A
$\mathrm{x}=3$		
$\mathrm{x}=10$		

2) Mariah thinks that the following rule should always hold true. Do you agree? Find evidence for or against the following equivalency rule by substituting values in for a and b.

$$
(a+b)^{2}=a^{2}+b^{2}
$$

Extension: Create an equivalent trinomial for $(a+b)^{2}$ using the method of double distribution.

$3 x-2$

1) Rewrite each expression below in simplest form by applying the distributive property of multiplication.
(a) $(x+3)(x+6)$
(b) $(3 x-4)(3 x+2)$
(c) $(x+3)(x-3)$
(d) $(4 x-5)^{2}$

2) If the sides of a rectangle are $4 x+9$ and $x-8$, express the area of the rectangle as a polynomial. Then, show that the expressions are equivalent by letting $x=3$.

Bonus Question: If the edge of a cube is $\mathrm{x}-1$, express the volume of the cube as a polynomial. Then, show that the expressions are equivalent by letting $x=3$.

