\qquad
Math 8R

Solving Systems of Equations Algebraically - REVIEW

How many solutions does each system have? (One Solution, Infinite Solutions, or No Solution)

1) $x+3 y=-10$
$-x-3 y=10$
2) $3 x-8 y=9$
$3 x+8 y=-3$
3) $7 x-6 y=4$
$-7 x+6 y=-5$

Determine if the following is a solution to the system of equations:

Solve each system of equations algebraically for numbers 7-12
7) $y=5 x+4$ $y=3 x-6$
8) $\begin{aligned} 15 x+3 y & =15 \\ 3 x-3 y & =9\end{aligned}$

$\text { 9) } \begin{aligned} & 6 x+9 y=57 \\ & x=5 \end{aligned}$	$\text { 10) } \begin{aligned} & 4 x+2 y=12 \\ & 2 x+4 y=-18 \end{aligned}$
$\text { 11) } \begin{aligned} & 3 x+7 y=-2 \\ & 2 x+3 y=-3 \end{aligned}$	$\text { 12) } \begin{aligned} x-4 y & =3 \\ -4 x+2 y & =16 \end{aligned}$

13) A jar contains dimes and nickels. The total number of coins in the jar is 15 . The total value of the coins is $\$ 1.00$. How many of each type of coin are in the jar?
14) Mia bought 7 shirts for a total of $\$ 95$. Her long-sleeved shirts cost $\$ 25$ each and her tank tops cost $\$ 9$ each. How many of each type of shirt did she buy?
\qquad

HW: Ticket To The Test - Systems of Equations REVIEW

What are the three types of solutions?

1) \qquad solution is when your answer looks like this " $\mathrm{x}=\mathrm{\#}$ "
2) \qquad solution is when your answer looks like this " $5 \neq 7$ " (False statement)
3) \qquad solutions is when your answer looks like this " $-6=-6$ " (True statement)

Use substitution when you have an equation with \qquad or \qquad . Substitute that value in for that variable in the other equation, then solve for the remaining variable!
Example: Solve the following system of equations for the value of x and y . Show all steps neatly. Write your solution as an ordered pair.

$$
\begin{aligned}
& -3 x+3 y=12 \\
& y=x+4
\end{aligned}
$$

Use elimination when you have an equation with like terms lined up. Look for \qquad coefficients. If you do not have any, \qquad an entire equation to create opposite coefficients. Then, add all like terms and solve for the remaining variable.
Example: Solve the following system of equations for the value of x and y. Show all steps neatly. Write your solution as an ordered pair.

$$
\begin{aligned}
& -2 x+y=4 \\
& -8 x+2 y=16
\end{aligned}
$$

In word problems, look for 2 things the situation is dealing with. Write an equation for each set of information (you can find this by the totals). Write a let statement unless specifically told variables to use. Example: Write a system of equation to represent the following situation and solve it find the answer
Lucia wants to go ice skating. She must pay for admission and then rent ice skates. Rates for two rinks near her home are shown below.

Ice Plex
$\$ 5$ for admission plus \$2 per hour
for skate rental

Skate World
$\$ 10$ for admission plus $\$ 1$ per hour for skate rental

For how many hours of skate rentals will the cost be the same at both skating rinks?
Equations: Ice Plex: \qquad
Skate World: \qquad

