\qquad
Zero and Negative Exponent Rules
Aim: How can we create a rule when we have exponents that are zero and negative?
Warm Up: Simplify the following expressions.
(a) $\frac{9 y^{16}}{3 y^{7}}$
$3 y^{9}$
(b) $\frac{5 x^{3} y^{6}}{1 x y}$
$5 x^{2} y^{5}$

Discovery to the Zero Exponent Rule
What happens when you raise a number to a zero power? Look for a pattern as you fill in the table below. Then, evaluate each expression using what you know about dividing a number by itself.

RULE: Any number raised to the ZeRO power will ALWAYS be \square 1
Note this works when $x \neq 0 \quad 0^{0}=$
Exercise 1-Evaluate the following
(1) $\quad(-9821)^{0}=1$
(2) $\quad(4 x)^{0}=1$
(3) $4 x^{0}$

$$
4 \cdot 1=
$$

Discovery to the Negative Exponent Rule
What happens when you raise a number to a negative power? Look for a pattern in the table below.

Expression	Expanded Form	Exponential Form	As a Fraction
$\frac{\mathbf{2}^{2}}{\mathbf{2}^{5}}$	$\left.\frac{2 \cdot 2}{2 \cdot 2 \cdot(2 \cdot 2 \cdot 2}\right)$	$2-3$	$\frac{1}{2^{3}}$
$\frac{4^{4}}{\mathbf{4}^{10}}$		$2-6$	$\frac{1}{4^{6}}$
$\frac{(-9)^{2}}{(-9)^{7}}$		$(-9)^{-5}$	$\frac{1}{(-9)^{5}}$
$\frac{a^{6} b^{5}}{a^{9} b^{12}}$	$\frac{1}{a^{3} b^{7}}$		

stay
where ever larger
exponent
began.

Exercise 2- Write each expression using a positive exponent
(4) 8^{-5} $\frac{1}{8^{5}}$
(5)

$\begin{array}{c}3^{-9} \\ 1\end{array}$
3^{9}

(6)

(7) p^{-4}
$\frac{1}{p^{4}}$

Problem Set: Putting it all together.

Simplify each expression and re-write with a positive exponent. Show ALL work!

Determine the missing (?) value in each:
(17) $\frac{x^{6}}{x^{?}}=x^{4}$
(18) $\quad \frac{2^{8}}{2^{?}}=\quad 2^{9}$

- Anything raised to the zero power is always \qquad .
- When you have negative exponents, in order to make them positive you:

HW \# \qquad Date: \qquad
Aim: How can we create a rule for exponents that are zero and negative?
Simplify each expression. Write solution without zero or negative exponents.

1. -3^{0}	2. $8 \mathrm{k}^{0}$	3. $(-5)^{-2}$
4. 2^{-4}	5. $5 \mathrm{x}^{-4}$	6. $\frac{\mathrm{x}^{5}}{\mathrm{y}^{-3}}$
7. $\frac{\mathrm{a}^{-4}}{\mathrm{~b}^{-3}}$	8. $2 \mathrm{x}^{-1} \mathrm{y}^{-4}$	9. $\frac{\mathrm{x}^{2}}{2 \mathrm{y}^{-3}}$

10. Which of the following is correct? Explain why the other choice is incorrect.
a. $2 \mathrm{x}^{-3}=\frac{1}{2 \mathrm{x}^{3}}$
b. $\quad 2 \mathrm{x}^{-3}=\frac{2}{\mathrm{x}^{3}}$
