Zero and Negative Exponent Rules

Aim: How can we create a rule when we have exponents that are zero and negative?

Warm Up: Simplify the following expressions.

Discovery to the Zero Exponent Rule

What happens when you raise a number to a zero power? Look for a pattern as you fill in the table below. Then, evaluate each expression using what you know about dividing a number by itself.

Expression	Expanded Form	Exponential Form	Evaluate		
<u>56</u>	5.5.5.5.5.5	5°	1		
56	5.5.5.5.5.5	0			
$\frac{x^5}{x^5}$	x. x. x. x. x. 2. x. x. x. x	χ°			
$\frac{(-4)^3}{(-4)^3}$		(-4)°			
RULE: Any number raised to the <u>ZERO</u> power will ALWAYS be					
<i>Note</i> this works when $x \neq 0$ $0^{\circ} = 0$					
Exercise 1- Evaluate the following					

(1) $(-9821)^{\circ} = 1$ (2) $(4x)^{\circ} = 1$ (3) $4x^{\circ}$ $4 \cdot 1 = 4$

Discovery to the Negative Exponent Rule

What happens when you raise a number to a negative power? Look for a pattern in the table below.

Expression	Expanded Form	Exponential Form	As a Fraction
<u>2²</u>	2:2	7-3	
25	2.2.2.2	L	23
<u>4</u> ⁴		21-6	1
4 ¹⁰			46
$(-9)^2$		$(-0)^{-5}$	
(-9)7		(-9)	(-9)5
a^6b^5			
a^9b^{12}			

Problem Set: Putting it all together.

Simplify each expression and re-write with a *positive* exponent. Show ALL work!

$\begin{array}{c} (8) & 7a^{0}b^{3} \\ \hline 7 \cdot \cdot b^{3} = \left(\begin{array}{c} 7b^{3} \\ 7b \end{array} \right) \end{array}$	(9) $\frac{6^8}{6^9} = 10^{-1} = 10^{-1}$	$\begin{array}{c} (10) 8x^{-2} \\ \hline \chi^2 \\ \chi^2 \end{array}$
(11) $10x^{-4}y^5$	(12) $\frac{8x^9}{2x}$	(13) $(\frac{3}{4})^{-1}$ <u>4</u> <u>3</u>
(14) $(4x^{-2}y^{5}z^{-3})(5x^{3}y^{-5}z^{-2})$	$(15) 2^2(2^4 + 2^{-8})$	(16) $-x^3y^{-6}$

Determine the missing (?) value in each:

(17)
$$\frac{x^6}{x^7} = x^4$$
 (18) $\frac{2^8}{2^7} = 2^9$

####